1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| input: (3, 1, 5) [[[0.98175333 0.59281082 0.47678967 0.70612923 0.73616147]]
[[0.8363702 0.85099391 0.75740424 0.30633335 0.20097122]]
[[0.60316062 0.21921029 0.16052985 0.25654177 0.40698399]]] hidden: (3, 5) [[0.46976021 0.19681885 0.59240364 0.79540728 0.27608136] [0.39461795 0.29340918 0.4515729 0.6921841 0.44068605] [0.89315058 0.72514622 0.2925488 0.45433305 0.59910906]] ==================== tensorflow result ==================== tf.Tensor( [[[0.23488011 0.09840942 0.29620182 0.39770364 0.13804068]]
[[0.19730898 0.14670459 0.22578645 0.34609205 0.22034303]]
[[0.44657529 0.36257311 0.1462744 0.22716653 0.29955453]]], shape=(3, 1, 5), dtype=float64) tf.Tensor( [[0.23488011 0.09840942 0.29620182 0.39770364 0.13804068] [0.19730898 0.14670459 0.22578645 0.34609205 0.22034303] [0.44657529 0.36257311 0.1462744 0.22716653 0.29955453]], shape=(3, 5), dtype=float64)
==================== rnn cell result ==================== [tensor([[0.2349, 0.0984, 0.2962, 0.3977, 0.1380], [0.1973, 0.1467, 0.2258, 0.3461, 0.2203], [0.4466, 0.3626, 0.1463, 0.2272, 0.2996]], grad_fn=<AddBackward0>)]
==================== rnn result ==================== tensor([[[0.2349, 0.0984, 0.2962, 0.3977, 0.1380], [0.1973, 0.1467, 0.2258, 0.3461, 0.2203], [0.4466, 0.3626, 0.1463, 0.2272, 0.2996]]], grad_fn=<StackBackward>) torch.Size([1, 3, 5]) tensor([[[0.2349, 0.0984, 0.2962, 0.3977, 0.1380], [0.1973, 0.1467, 0.2258, 0.3461, 0.2203], [0.4466, 0.3626, 0.1463, 0.2272, 0.2996]]], grad_fn=<StackBackward>) torch.Size([1, 3, 5])
Process finished with exit code 0
|